Mathematics/Algebra/Number Theory/RSA

Home

RSA

Last Revised: 2025-12-30

Abstract

현대 공개키 암호화의 조상격 되는 RSA 암호화에 대해 알아보자

Fermat's theorem

Let pp be a prime and pap \nmid a.

ap11(modp)a^{p-1} \equiv 1 \pmod{p}.

Euler's phi(ϕ\phi) function

ϕ(n)=\phi(n) = # of k<n s.t. gcd(k,n)=1k < n \ s.t. \ \gcd(k, n) = 1

Properties

(a) if pp is a prime, then ϕ(p)=p1\phi(p) = p-1

(b) ϕ\phi is multiplicative. i.e. if gcd(m,n)=1\gcd(m, n) = 1 then, ϕ(mn)=ϕ(m)ϕ(n)\phi(mn) = \phi(m)\phi(n)

Euler's theorem

If gcd(a,n)=1\gcd(a, n) = 1, then aϕ(n)1(modn)a^{\phi(n)} \equiv 1 \pmod{n}

RSA

  1. p, q
  2. n = pq
  3. 1 < k < phi(n), gcd(k, phi(n)) = 1
  4. (n, k): pub
  5. M^k = r (mod n)
  6. 1 < j < phi(n), kj = 1 (mod phi(n)) (j exists gcd() = 1)
  7. r^j = M^kj = M^1+phi(n)t = MM^phi(n)t = M (mod n)

안전한가?

소수 선택