RSA
Last Revised: 2025-12-30
Abstract
현대 공개키 암호화의 조상격 되는 RSA 암호화에 대해 알아보자
Fermat's theorem
Let p be a prime and p∤a.
ap−1≡1(modp).
Euler's phi(ϕ) function
ϕ(n)= # of k<n s.t. gcd(k,n)=1
Properties
(a) if p is a prime, then ϕ(p)=p−1
(b) ϕ is multiplicative. i.e. if gcd(m,n)=1 then, ϕ(mn)=ϕ(m)ϕ(n)
Euler's theorem
If gcd(a,n)=1, then aϕ(n)≡1(modn)
RSA
- p, q
- n = pq
- 1 < k < phi(n), gcd(k, phi(n)) = 1
- (n, k): pub
- M^k = r (mod n)
- 1 < j < phi(n), kj = 1 (mod phi(n)) (j exists gcd() = 1)
- r^j = M^kj = M^1+phi(n)t = MM^phi(n)t = M (mod n)
안전한가?
소수 선택